增加 基础价值B11 计算模块
This commit is contained in:
parent
3aa806ea6b
commit
d89e17ecc2
0
app/api/v1/calculation/__init__.py
Normal file
0
app/api/v1/calculation/__init__.py
Normal file
120
app/api/v1/calculation/calcuation.py
Normal file
120
app/api/v1/calculation/calcuation.py
Normal file
@ -0,0 +1,120 @@
|
||||
from fastapi import APIRouter, Depends, HTTPException, status
|
||||
from typing import Optional, List, Dict, Any
|
||||
import json
|
||||
|
||||
from app.controllers.user_valuation import user_valuation_controller
|
||||
from app.schemas.valuation import (
|
||||
UserValuationCreate,
|
||||
UserValuationQuery,
|
||||
UserValuationList,
|
||||
UserValuationOut,
|
||||
UserValuationDetail
|
||||
)
|
||||
from app.schemas.base import Success, SuccessExtra
|
||||
from app.utils.app_user_jwt import get_current_app_user_id
|
||||
from app.utils.calculation_engine.economic_value_b1.economic_value_b1 import EconomicValueB1Calculator
|
||||
|
||||
app_valuations_router = APIRouter(tags=["用户端估值评估"])
|
||||
|
||||
@app_valuations_router.post("/calculation", summary="计算估值")
|
||||
async def calculate_valuation(
|
||||
data: UserValuationCreate,
|
||||
user_id: int = Depends(get_current_app_user_id)
|
||||
):
|
||||
"""
|
||||
计算估值评估
|
||||
|
||||
根据用户提交的估值评估数据,调用计算引擎进行经济价值B1计算
|
||||
"""
|
||||
try:
|
||||
# 创建计算器实例
|
||||
calculator = EconomicValueB1Calculator()
|
||||
|
||||
# 从用户数据中提取计算所需的参数
|
||||
input_data = _extract_calculation_params(data)
|
||||
|
||||
# 调用计算引擎进行估值计算
|
||||
calculation_result = calculator.calculate_complete_economic_value_b1(input_data)
|
||||
|
||||
# 创建估值评估记录
|
||||
result = await user_valuation_controller.create_valuation(
|
||||
user_id=user_id,
|
||||
data=data
|
||||
)
|
||||
|
||||
# 将计算结果添加到返回数据中
|
||||
result_dict = json.loads(result.model_dump_json())
|
||||
result_dict['calculation_result'] = calculation_result
|
||||
|
||||
return Success(data=result_dict, msg="估值计算完成")
|
||||
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=400, detail=f"计算失败: {str(e)}")
|
||||
|
||||
|
||||
def _extract_calculation_params(data: UserValuationCreate) -> Dict[str, Any]:
|
||||
"""
|
||||
从用户提交的数据中提取计算所需的参数
|
||||
|
||||
Args:
|
||||
data: 用户提交的估值评估数据
|
||||
|
||||
Returns:
|
||||
Dict: 计算所需的参数字典
|
||||
"""
|
||||
# 基础价值B11相关参数
|
||||
# 财务价值所需数据 从近三年收益计算
|
||||
three_year_income = data.three_year_income or [0, 0, 0]
|
||||
|
||||
|
||||
# 法律强度L相关参数 - 需要用户额外提供评分
|
||||
# 这里使用默认值,实际应用中需要用户填写
|
||||
patent_score = 5.0 # 专利分 (0-10分)
|
||||
popularity_score = 5.0 # 普及地域分 (0-10分)
|
||||
infringement_score = 5.0 # 侵权分 (0-10分)
|
||||
|
||||
# 发展潜力D相关参数
|
||||
esg_score = 5.0 # ESG分 (0-10分)
|
||||
# 创新投入比 = (研发费用/营收) * 100
|
||||
try:
|
||||
rd_investment = float(data.rd_investment or 0)
|
||||
annual_revenue = float(data.annual_revenue or 1) # 避免除零
|
||||
innovation_ratio = (rd_investment / annual_revenue) * 100 if annual_revenue > 0 else 0
|
||||
except (ValueError, TypeError):
|
||||
innovation_ratio = 0.0
|
||||
|
||||
# 行业系数I - 系统配置值
|
||||
target_industry_roe = 0.15 # 目标行业平均ROE
|
||||
benchmark_industry_roe = 0.12 # 基准行业ROE
|
||||
|
||||
# 流量因子B12相关参数
|
||||
# 近30天搜索指数S1 - 从社交媒体数据计算
|
||||
search_index_s1 = 4500.0 # 默认值,实际应从API获取
|
||||
industry_average_s2 = 5000.0 # 行业均值,系统配置
|
||||
|
||||
# 社交媒体传播度S3 - 从线上账号信息计算
|
||||
social_media_spread_s3 = 1.07 # 默认值,实际应从API获取
|
||||
|
||||
# 政策乘数B13相关参数
|
||||
# 政策契合度评分P - 根据行业和资助情况计算
|
||||
policy_compatibility_score = 9.1 # 默认值,实际应系统计算
|
||||
|
||||
return {
|
||||
# 基础价值B11相关参数
|
||||
'financial_value': financial_value,
|
||||
'patent_score': patent_score,
|
||||
'popularity_score': popularity_score,
|
||||
'infringement_score': infringement_score,
|
||||
'esg_score': esg_score,
|
||||
'innovation_ratio': innovation_ratio,
|
||||
'target_industry_roe': target_industry_roe,
|
||||
'benchmark_industry_roe': benchmark_industry_roe,
|
||||
|
||||
# 流量因子B12相关参数
|
||||
'search_index_s1': search_index_s1,
|
||||
'industry_average_s2': industry_average_s2,
|
||||
'social_media_spread_s3': social_media_spread_s3,
|
||||
|
||||
# 政策乘数B13相关参数
|
||||
'policy_compatibility_score': policy_compatibility_score
|
||||
}
|
||||
3
app/utils/calculation_engine/__init__.py
Normal file
3
app/utils/calculation_engine/__init__.py
Normal file
@ -0,0 +1,3 @@
|
||||
'''
|
||||
这是非物质文化遗产IP知识产权评估系统的核心计算引擎包。
|
||||
'''
|
||||
18
app/utils/calculation_engine/economic_value_b1/__init__.py
Normal file
18
app/utils/calculation_engine/economic_value_b1/__init__.py
Normal file
@ -0,0 +1,18 @@
|
||||
"""
|
||||
经济价值B1计算包
|
||||
经济价值B1 = 基础价值B11 × (1 + 流量因子B12) × 政策乘数B13
|
||||
"""
|
||||
|
||||
from .economic_value_b1 import EconomicValueB1Calculator
|
||||
from .sub_formulas import (
|
||||
BasicValueB11Calculator,
|
||||
TrafficFactorB12Calculator,
|
||||
PolicyMultiplierB13Calculator
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
"EconomicValueB1Calculator",
|
||||
"BasicValueB11Calculator",
|
||||
"TrafficFactorB12Calculator",
|
||||
"PolicyMultiplierB13Calculator"
|
||||
]
|
||||
@ -0,0 +1,142 @@
|
||||
"""
|
||||
经济价值B1计算模块
|
||||
|
||||
经济价值B1 = 基础价值B11 × (1 + 流量因子B12) × 政策乘数B13
|
||||
|
||||
"""
|
||||
|
||||
from typing import Dict
|
||||
try:
|
||||
# 相对导入(当作为包使用时)
|
||||
from .sub_formulas.basic_value_b11 import BasicValueB11Calculator
|
||||
from .sub_formulas.traffic_factor_b12 import TrafficFactorB12Calculator
|
||||
from .sub_formulas.policy_multiplier_b13 import PolicyMultiplierB13Calculator
|
||||
except ImportError:
|
||||
# 绝对导入(当直接运行时)
|
||||
from sub_formulas.basic_value_b11 import BasicValueB11Calculator
|
||||
from sub_formulas.traffic_factor_b12 import TrafficFactorB12Calculator
|
||||
from sub_formulas.policy_multiplier_b13 import PolicyMultiplierB13Calculator
|
||||
|
||||
|
||||
class EconomicValueB1Calculator:
|
||||
"""经济价值B1计算器"""
|
||||
|
||||
def __init__(self):
|
||||
"""初始化计算器"""
|
||||
self.basic_value_calculator = BasicValueB11Calculator()
|
||||
self.traffic_factor_calculator = TrafficFactorB12Calculator()
|
||||
self.policy_multiplier_calculator = PolicyMultiplierB13Calculator()
|
||||
|
||||
def calculate_economic_value_b1(self,
|
||||
basic_value_b11: float,
|
||||
traffic_factor_b12: float,
|
||||
policy_multiplier_b13: float) -> float:
|
||||
"""
|
||||
计算经济价值B1
|
||||
|
||||
|
||||
经济价值B1 = 基础价值B11 × (1 + 流量因子B12) × 政策乘数B13
|
||||
|
||||
Args:
|
||||
basic_value_b11: 基础价值B11 (系统计算)
|
||||
traffic_factor_b12: 流量因子B12 (系统计算)
|
||||
policy_multiplier_b13: 政策乘数B13 (系统计算)
|
||||
|
||||
Returns:
|
||||
float: 经济价值B1
|
||||
"""
|
||||
economic_value = basic_value_b11 * (1 + traffic_factor_b12) * policy_multiplier_b13
|
||||
|
||||
return economic_value
|
||||
|
||||
def calculate_complete_economic_value_b1(self, input_data: Dict) -> Dict:
|
||||
"""
|
||||
计算完整的经济价值B1,包含所有子公式
|
||||
|
||||
Args:
|
||||
input_data: 输入数据字典,包含所有必要的参数
|
||||
|
||||
Returns:
|
||||
Dict: 包含所有中间计算结果和最终结果的字典
|
||||
"""
|
||||
# 财务价值F 近三年年均收益列表 [1,2,3]
|
||||
|
||||
financial_value = self.basic_value_calculator.calculate_financial_value_f()
|
||||
# 计算法律强度L patent_score: 专利分 (0-10分) (用户填写)
|
||||
# popularity_score: 普及地域分 (0-10分) (用户填写)
|
||||
# infringement_score: 侵权分 (0-10分) (用户填写)
|
||||
|
||||
legal_strength = self.basic_value_calculator.calculate_legal_strength_l()
|
||||
# 发展潜力 patent_score: 专利分 (0-10分) (用户填写)
|
||||
# esg_score: ESG分 (0-10分) (用户填写)
|
||||
# innovation_ratio: 创新投入比 (研发费用/营收) * 100 (用户填写)
|
||||
|
||||
development_potential = self.basic_value_calculator.calculate_development_potential_d()
|
||||
# 计算行业系数I target_industry_roe: 目标行业平均ROE (系统配置)
|
||||
# benchmark_industry_roe: 基准行业ROE (系统配置)
|
||||
industry_coefficient = self.basic_value_calculator.calculate_industry_coefficient_i()
|
||||
# 计算基础价值B11
|
||||
basic_value_b11 = self.basic_value_calculator.calculate_basic_value_b11(
|
||||
financial_value,
|
||||
legal_strength,
|
||||
development_potential,
|
||||
industry_coefficient
|
||||
)
|
||||
|
||||
# 计算流量因子B12
|
||||
traffic_factor_b12 = self.traffic_factor_calculator.calculate_traffic_factor_b12(
|
||||
input_data['search_index_s1'],
|
||||
input_data['industry_average_s2'],
|
||||
input_data['social_media_spread_s3']
|
||||
)
|
||||
|
||||
# 计算政策乘数B13
|
||||
policy_multiplier_b13 = self.policy_multiplier_calculator.calculate_policy_multiplier_b13(
|
||||
input_data['policy_compatibility_score']
|
||||
)
|
||||
|
||||
# 计算经济价值B1
|
||||
economic_value_b1 = self.calculate_economic_value_b1(
|
||||
basic_value_b11,
|
||||
traffic_factor_b12,
|
||||
policy_multiplier_b13
|
||||
)
|
||||
|
||||
return {
|
||||
'basic_value_b11': basic_value_b11,
|
||||
'traffic_factor_b12': traffic_factor_b12,
|
||||
'policy_multiplier_b13': policy_multiplier_b13,
|
||||
'economic_value_b1': economic_value_b1
|
||||
}
|
||||
|
||||
|
||||
# 示例使用
|
||||
if __name__ == "__main__":
|
||||
|
||||
calculator = EconomicValueB1Calculator()
|
||||
|
||||
# 示例数据
|
||||
input_data = {
|
||||
# 基础价值B11相关参数
|
||||
'financial_value': 68.04, # 财务价值F
|
||||
'legal_strength': 7.90, # 法律强度L
|
||||
'development_potential': 6.00, # 发展潜力D
|
||||
'industry_coefficient': 0.25, # 行业系数I
|
||||
|
||||
# 流量因子B12相关参数
|
||||
'search_index_s1': 4500.0, # 近30天搜索指数S1
|
||||
'industry_average_s2': 5000.0, # 行业均值S2
|
||||
'social_media_spread_s3': 1.07, # 社交媒体传播度S3
|
||||
|
||||
# 政策乘数B13相关参数
|
||||
'policy_compatibility_score': 9.1 # 政策契合度评分P
|
||||
}
|
||||
|
||||
# 计算经济价值B1
|
||||
result = calculator.calculate_complete_economic_value_b1(input_data)
|
||||
|
||||
print("经济价值B1计算结果:")
|
||||
print(f"基础价值B11: {result['basic_value_b11']:.2f}")
|
||||
print(f"流量因子B12: {result['traffic_factor_b12']:.4f}")
|
||||
print(f"政策乘数B13: {result['policy_multiplier_b13']:.4f}")
|
||||
print(f"经济价值B1: {result['economic_value_b1']:.2f}")
|
||||
@ -0,0 +1,34 @@
|
||||
"""
|
||||
经济价值B1子公式包
|
||||
|
||||
包含经济价值B1的所有子公式计算模块:
|
||||
|
||||
1. basic_value_b11: 基础价值B11计算
|
||||
- 财务价值F = [3年内年均收益 × (1 + 增长率)^5] / 5
|
||||
- 法律强度L = 专利分 × 0.4 + 普及分 × 0.3 + 侵权分 × 0.3
|
||||
- 发展潜力D = 专利分 × 0.5 + ESG分 × 0.2 + 创新投入比 × 0.3
|
||||
- 行业系数I = (目标行业平均ROE - 基准行业ROE) / 基准行业ROE
|
||||
|
||||
- 基础价值B11 = 财务价值F × (0.45 + 0.05 × 行业系数I) + 法律强度L × (0.35 + 0.05 × 行业系数I) + 发展潜力D × 0.2
|
||||
|
||||
2. traffic_factor_b12: 流量因子B12计算
|
||||
- 近30天搜索指数S1 = 百度搜索指数 × 0.4 + 微信搜索指数 × 0.3 + 微博搜索指数 × 0.3
|
||||
- 社交媒体传播度S3 = 互动量指数 × 0.4 + 覆盖人群指数 × 0.3 + 转化效率 × 0.3
|
||||
- 行业均值S2 = 系统内根据行业自动匹配行业均值S2
|
||||
|
||||
- 流量因子B12 = ln(近30天搜索指数S1/行业均值S2) × 0.3 + 社交媒体传播度S3 × 0.7
|
||||
|
||||
3. policy_multiplier_b13: 政策乘数B13计算
|
||||
- 政策契合度P = 政策匹配度 × 0.4 + 实施阶段评分 × 0.3 + 资金支持度 × 0.3
|
||||
- 政策乘数B13 = 1 + (政策契合度评分P × 0.15)
|
||||
"""
|
||||
|
||||
from .basic_value_b11 import BasicValueB11Calculator
|
||||
from .traffic_factor_b12 import TrafficFactorB12Calculator
|
||||
from .policy_multiplier_b13 import PolicyMultiplierB13Calculator
|
||||
|
||||
__all__ = [
|
||||
"BasicValueB11Calculator",
|
||||
"TrafficFactorB12Calculator",
|
||||
"PolicyMultiplierB13Calculator"
|
||||
]
|
||||
@ -0,0 +1,296 @@
|
||||
import math
|
||||
from typing import List, Optional
|
||||
|
||||
|
||||
class BasicValueB11Calculator:
|
||||
"""基础价值B11计算器"""
|
||||
|
||||
def __init__(self):
|
||||
"""初始化计算器"""
|
||||
pass
|
||||
|
||||
def calculate_basic_value_b11(self,
|
||||
financial_value: float,
|
||||
legal_strength: float,
|
||||
development_potential: float,
|
||||
industry_coefficient: float) -> float:
|
||||
"""
|
||||
计算基础价值B11
|
||||
|
||||
基础价值B11 = 财务价值F × (0.45 + 0.05 × 行业系数I) + 法律强度L × (0.35 + 0.05 × 行业系数I) + 发展潜力D × 0.2
|
||||
|
||||
Args:
|
||||
financial_value: 财务价值F (用户填写)
|
||||
legal_strength: 法律强度L (用户填写)
|
||||
development_potential: 发展潜力D (用户填写)
|
||||
industry_coefficient: 行业系数I (系统配置)
|
||||
|
||||
Returns:
|
||||
float: 基础价值B11
|
||||
"""
|
||||
basic_value = (financial_value * (0.45 + 0.05 * industry_coefficient) +
|
||||
legal_strength * (0.35 + 0.05 * industry_coefficient) +
|
||||
development_potential * 0.2)
|
||||
|
||||
return basic_value
|
||||
|
||||
def growth_rate(self, annual_revenue_3_years: List[float]):
|
||||
"""
|
||||
|
||||
"""
|
||||
g1, g2 = (annual_revenue_3_years[1] - annual_revenue_3_years[0]) / annual_revenue_3_years[0] * 100, (
|
||||
annual_revenue_3_years[2] - annual_revenue_3_years[1]) / annual_revenue_3_years[1] * 100
|
||||
predicted_growth = g2 + (g2 - g1)
|
||||
return predicted_growth
|
||||
|
||||
def calculate_financial_value_f(self,
|
||||
annual_revenue_3_years: List[float],
|
||||
growth_rate: Optional[float] = None) -> float:
|
||||
"""
|
||||
计算财务价值F
|
||||
|
||||
财务价值F = [3年内年均收益 × (1 + 增长率)^5] / 5
|
||||
|
||||
Args:
|
||||
annual_revenue_3_years: 近三年年均收益列表,单位:万元 (用户填写)
|
||||
growth_rate: 增长率,如果为None则自动计算 (用户填写)
|
||||
|
||||
Returns:
|
||||
float: 财务价值F
|
||||
"""
|
||||
if len(annual_revenue_3_years) != 3:
|
||||
raise ValueError("必须提供近三年的收益数据")
|
||||
|
||||
# 计算年均收益
|
||||
avg_annual_revenue = sum(annual_revenue_3_years) / 3
|
||||
|
||||
# 如果没有提供增长率,则根据三年数据计算
|
||||
if growth_rate is None:
|
||||
growth_rate = self._calculate_growth_rate(annual_revenue_3_years)
|
||||
|
||||
financial_value = (avg_annual_revenue * math.pow(1 + growth_rate, 5)) / 5
|
||||
|
||||
return financial_value
|
||||
|
||||
def _calculate_growth_rate(self, revenue_data: List[float]) -> float:
|
||||
"""
|
||||
根据三年收益数据计算增长率
|
||||
|
||||
Args:
|
||||
revenue_data: 三年收益数据 (用户填写)
|
||||
|
||||
Returns:
|
||||
float: 增长率
|
||||
"""
|
||||
if len(revenue_data) != 3:
|
||||
raise ValueError("必须提供三年的收益数据")
|
||||
|
||||
# 计算两个增长率差值作为预测的增长率差值
|
||||
growth_rate_1 = (revenue_data[1] - revenue_data[0]) / revenue_data[0] if revenue_data[0] != 0 else 0
|
||||
growth_rate_2 = (revenue_data[2] - revenue_data[1]) / revenue_data[1] if revenue_data[1] != 0 else 0
|
||||
|
||||
# 使用两个增长率的平均值
|
||||
avg_growth_rate = (growth_rate_1 + growth_rate_2) / 2
|
||||
|
||||
return avg_growth_rate
|
||||
|
||||
def calculate_legal_strength_l(self,
|
||||
patent_score: float,
|
||||
popularity_score: float,
|
||||
infringement_score: float) -> float:
|
||||
"""
|
||||
计算法律强度L
|
||||
|
||||
|
||||
法律强度L = 专利分 × 0.4 + 普及分 × 0.3 + 侵权分 × 0.3
|
||||
|
||||
Args:
|
||||
patent_score: 专利分 (0-10分) (用户填写)
|
||||
popularity_score: 普及地域分 (0-10分) (用户填写)
|
||||
infringement_score: 侵权分 (0-10分) (用户填写)
|
||||
|
||||
Returns:
|
||||
float: 法律强度L
|
||||
"""
|
||||
|
||||
legal_strength = (patent_score * 0.4 +
|
||||
popularity_score * 0.3 +
|
||||
infringement_score * 0.3)
|
||||
|
||||
return legal_strength
|
||||
|
||||
def calculate_development_potential_d(self,
|
||||
patent_score: float,
|
||||
esg_score: float,
|
||||
innovation_ratio: float) -> float:
|
||||
"""
|
||||
计算发展潜力D
|
||||
|
||||
|
||||
发展潜力D = 专利分 × 0.5 + ESG分 × 0.2 + 创新投入比 × 0.3
|
||||
|
||||
Args:
|
||||
patent_score: 专利分 (0-10分) (用户填写)
|
||||
esg_score: ESG分 (0-10分) (用户填写)
|
||||
innovation_ratio: 创新投入比 (研发费用/营收) * 100 (用户填写)
|
||||
|
||||
Returns:
|
||||
float: 发展潜力D
|
||||
"""
|
||||
|
||||
development_potential = (patent_score * 0.5 +
|
||||
esg_score * 0.2 +
|
||||
innovation_ratio * 0.3)
|
||||
|
||||
return development_potential
|
||||
|
||||
def calculate_industry_coefficient_i(self,
|
||||
target_industry_roe: float,
|
||||
benchmark_industry_roe: float) -> float:
|
||||
"""
|
||||
计算行业系数I
|
||||
|
||||
行业系数I = (目标行业平均ROE - 基准行业ROE) / 基准行业ROE
|
||||
|
||||
Args:
|
||||
target_industry_roe: 目标行业平均ROE (系统配置)
|
||||
benchmark_industry_roe: 基准行业ROE (系统配置)
|
||||
|
||||
Returns:
|
||||
float: 行业系数I
|
||||
"""
|
||||
if benchmark_industry_roe == 0:
|
||||
raise ValueError("基准行业ROE不能为0")
|
||||
|
||||
industry_coefficient = (target_industry_roe - benchmark_industry_roe) / benchmark_industry_roe
|
||||
|
||||
return industry_coefficient
|
||||
|
||||
|
||||
# 专利相关计算函数
|
||||
def calculate_patent_score(patent_remaining_years: int) -> float:
|
||||
"""
|
||||
计算专利分
|
||||
|
||||
专利剩余保护期评分标准:
|
||||
- >10年: 10分
|
||||
- 5-10年: 7分
|
||||
- <5年: 3分
|
||||
|
||||
Args:
|
||||
patent_remaining_years: 专利剩余保护期(年) (用户填写)
|
||||
|
||||
Returns:
|
||||
float: 专利分
|
||||
"""
|
||||
if patent_remaining_years > 10:
|
||||
return 10.0
|
||||
elif patent_remaining_years >= 5:
|
||||
return 7.0
|
||||
else:
|
||||
return 3.0
|
||||
|
||||
|
||||
# 识别用户所上传的图像中的专利号,通过API验证专利是否存在,按所用专利数量赋分,未引用0分,每引用一项+2.5分,10分封顶(0-10分)
|
||||
def calculate_patent_usage_score(patent_count: int) -> float:
|
||||
"""
|
||||
计算专利使用量分
|
||||
|
||||
专利使用量评分标准:
|
||||
- 未引用: 0分
|
||||
- 每引用一项: +2.5分
|
||||
- 10分封顶
|
||||
|
||||
Args:
|
||||
patent_count: 专利数量 (用户填写)
|
||||
|
||||
Returns:
|
||||
float: 专利使用量分
|
||||
"""
|
||||
score = min(patent_count * 2.5, 10.0)
|
||||
return score
|
||||
|
||||
|
||||
# 普及地域评分
|
||||
def calculate_popularity_score(region_coverage: str) -> float:
|
||||
"""
|
||||
计算普及地域分
|
||||
|
||||
全球覆盖(10分),全国覆盖(7分),区域覆盖(4分)
|
||||
|
||||
Args:
|
||||
region_coverage: 普及地域类型 (用户填写)
|
||||
|
||||
Returns:
|
||||
float: 普及地域分
|
||||
"""
|
||||
coverage_scores = {
|
||||
"全球覆盖": 10.0,
|
||||
"全国覆盖": 7.0,
|
||||
"区域覆盖": 4.0
|
||||
}
|
||||
|
||||
return coverage_scores.get(region_coverage, 0.0)
|
||||
|
||||
|
||||
# 侵权记录评分
|
||||
def calculate_infringement_score(infringement_status: str) -> float:
|
||||
"""
|
||||
计算侵权记录分
|
||||
|
||||
无侵权记录(10分),历史侵权已解决(6分),现存纠纷(2分)
|
||||
|
||||
Args:
|
||||
infringement_status: 侵权记录状态 (用户填写)
|
||||
|
||||
Returns:
|
||||
float: 侵权记录分
|
||||
"""
|
||||
infringement_scores = {
|
||||
"无侵权记录": 10.0,
|
||||
"历史侵权已解决": 6.0,
|
||||
"现存纠纷": 2.0
|
||||
}
|
||||
|
||||
return infringement_scores.get(infringement_status, 0.0)
|
||||
|
||||
|
||||
# 示例使用
|
||||
if __name__ == "__main__":
|
||||
# 创建计算器实例
|
||||
calculator = BasicValueB11Calculator()
|
||||
|
||||
# 示例数据
|
||||
annual_revenue = [100, 120, 150] # 近三年收益,单位:万元 (用户填写)
|
||||
patent_remaining_years = 8 # 专利剩余年限 (用户填写)
|
||||
region_coverage = "全国覆盖" # 普及地域 (用户填写)
|
||||
infringement_status = "无侵权记录" # 侵权记录 (用户填写)
|
||||
patent_count = 2 # 专利数量 (用户填写)
|
||||
esg_score = 10.0 # ESG分 (用户填写)
|
||||
innovation_ratio = 5.0 # 创新投入比 (用户填写) 创新投入比(研发费用/营收)*100
|
||||
target_industry_roe = 0.15 # 目标行业ROE (系统配置)
|
||||
benchmark_industry_roe = 0.12 # 基准行业ROE (系统配置)
|
||||
|
||||
# 计算各项指标
|
||||
financial_value = calculator.calculate_financial_value_f(annual_revenue)
|
||||
patent_score = calculate_patent_score(patent_remaining_years)
|
||||
popularity_score = calculate_popularity_score(region_coverage)
|
||||
infringement_score = calculate_infringement_score(infringement_status)
|
||||
legal_strength = calculator.calculate_legal_strength_l(patent_score, popularity_score, infringement_score)
|
||||
|
||||
patent_usage_score = calculate_patent_usage_score(patent_count)
|
||||
development_potential = calculator.calculate_development_potential_d(patent_usage_score, esg_score,
|
||||
innovation_ratio)
|
||||
|
||||
industry_coefficient = calculator.calculate_industry_coefficient_i(target_industry_roe, benchmark_industry_roe)
|
||||
|
||||
# 计算基础价值B11
|
||||
basic_value = calculator.calculate_basic_value_b11(
|
||||
financial_value, legal_strength, development_potential, industry_coefficient
|
||||
)
|
||||
|
||||
print(f"财务价值F: {financial_value:.2f}")
|
||||
print(f"法律强度L: {legal_strength:.2f}")
|
||||
print(f"发展潜力D: {development_potential:.2f}")
|
||||
print(f"行业系数I: {industry_coefficient:.4f}")
|
||||
print(f"基础价值B11: {basic_value:.2f}")
|
||||
@ -0,0 +1,134 @@
|
||||
class PolicyMultiplierB13Calculator:
|
||||
"""政策乘数B13计算器"""
|
||||
|
||||
def __init__(self):
|
||||
"""初始化计算器"""
|
||||
pass
|
||||
|
||||
def calculate_policy_multiplier_b13(self, policy_compatibility_score: float) -> float:
|
||||
"""
|
||||
计算政策乘数B13
|
||||
|
||||
|
||||
政策乘数B13 = 1 + (政策契合度评分P × 0.15)
|
||||
|
||||
Args:
|
||||
policy_compatibility_score: 政策契合度评分P (系统计算)
|
||||
|
||||
Returns:
|
||||
float: 政策乘数B13
|
||||
"""
|
||||
#
|
||||
policy_multiplier = 1 + (policy_compatibility_score * 0.15)
|
||||
|
||||
return policy_multiplier
|
||||
|
||||
def calculate_policy_compatibility_score(self,
|
||||
policy_match_score: float,
|
||||
implementation_stage_score: float,
|
||||
funding_support_score: float) -> float:
|
||||
"""
|
||||
计算政策契合度评分P
|
||||
|
||||
|
||||
政策契合度P = 政策匹配度 × 0.4 + 实施阶段评分 × 0.3 + 资金支持度 × 0.3
|
||||
|
||||
Args:
|
||||
policy_match_score: 政策匹配度 (系统配置)
|
||||
implementation_stage_score: 实施阶段评分 (用户填写)
|
||||
funding_support_score: 资金支持度 (用户填写)
|
||||
|
||||
Returns:
|
||||
float: 政策契合度评分P
|
||||
"""
|
||||
#
|
||||
policy_compatibility = (policy_match_score * 0.4 +
|
||||
implementation_stage_score * 0.3 +
|
||||
funding_support_score * 0.3)
|
||||
|
||||
return policy_compatibility
|
||||
|
||||
def calculate_policy_match_score(self, industry: str) -> float:
|
||||
"""
|
||||
计算政策匹配度
|
||||
|
||||
系统内根据行业自动匹配政策匹配度
|
||||
|
||||
Args:
|
||||
industry: 所属行业 (用户填写)
|
||||
|
||||
Returns:
|
||||
float: 政策匹配度
|
||||
"""
|
||||
|
||||
return 5
|
||||
|
||||
def calculate_implementation_stage_score(self, implementation_stage: str) -> float:
|
||||
"""
|
||||
计算实施阶段评分
|
||||
|
||||
用户选择目前资产的实施阶段,成熟应用(10分)、推广阶段(7分)、试点阶段(4分)
|
||||
|
||||
Args:
|
||||
implementation_stage: 实施阶段 (用户填写)
|
||||
|
||||
Returns:
|
||||
float: 实施阶段评分
|
||||
"""
|
||||
stage_scores = {
|
||||
"成熟应用": 10.0,
|
||||
"推广阶段": 7.0,
|
||||
"试点阶段": 4.0
|
||||
}
|
||||
|
||||
return stage_scores.get(implementation_stage, 0.0)
|
||||
|
||||
def calculate_funding_support_score(self, funding_support: str) -> float:
|
||||
"""
|
||||
计算资金支持度
|
||||
|
||||
用户选择目前资产的资金支持情况,国家级资助(10分)、省级资助(7分)、无资助(0分)
|
||||
|
||||
Args:
|
||||
funding_support: 资金支持情况 (用户填写)
|
||||
|
||||
Returns:
|
||||
float: 资金支持度
|
||||
"""
|
||||
funding_scores = {
|
||||
"国家级资助": 10.0,
|
||||
"省级资助": 7.0,
|
||||
"无资助": 0.0
|
||||
}
|
||||
|
||||
return funding_scores.get(funding_support, 0.0)
|
||||
|
||||
|
||||
# 示例使用
|
||||
if __name__ == "__main__":
|
||||
# 创建计算器实例
|
||||
calculator = PolicyMultiplierB13Calculator()
|
||||
|
||||
# 示例数据
|
||||
industry = "文化艺术" # 所属行业 (用户填写)
|
||||
implementation_stage = "成熟应用" # 实施阶段 (用户填写)
|
||||
funding_support = "国家级资助" # 资金支持 (用户填写)
|
||||
|
||||
# 计算各项指标
|
||||
policy_match_score = calculator.calculate_policy_match_score(industry)
|
||||
implementation_stage_score = calculator.calculate_implementation_stage_score(implementation_stage)
|
||||
funding_support_score = calculator.calculate_funding_support_score(funding_support)
|
||||
|
||||
# 计算政策契合度评分P
|
||||
policy_compatibility_score = calculator.calculate_policy_compatibility_score(
|
||||
policy_match_score, implementation_stage_score, funding_support_score
|
||||
)
|
||||
|
||||
# 计算政策乘数B13
|
||||
policy_multiplier = calculator.calculate_policy_multiplier_b13(policy_compatibility_score)
|
||||
|
||||
print(f"政策匹配度: {policy_match_score:.2f}")
|
||||
print(f"实施阶段评分: {implementation_stage_score:.2f}")
|
||||
print(f"资金支持度: {funding_support_score:.2f}")
|
||||
print(f"政策契合度评分P: {policy_compatibility_score:.2f}")
|
||||
print(f"政策乘数B13: {policy_multiplier:.4f}")
|
||||
@ -0,0 +1,305 @@
|
||||
import math
|
||||
from typing import Dict, Tuple
|
||||
|
||||
|
||||
|
||||
class TrafficFactorB12Calculator:
|
||||
"""流量因子B12计算器"""
|
||||
|
||||
def __init__(self):
|
||||
"""初始化计算器"""
|
||||
pass
|
||||
|
||||
def calculate_traffic_factor_b12(self,
|
||||
search_index_s1: float,
|
||||
industry_average_s2: float,
|
||||
social_media_spread_s3: float) -> float:
|
||||
"""
|
||||
计算流量因子B12
|
||||
|
||||
流量因子B12 = ln(近30天搜索指数S1/行业均值S2) × 0.3 + 社交媒体传播度S3 × 0.7
|
||||
|
||||
Args:
|
||||
search_index_s1: 近30天搜索指数S1 (API获取)
|
||||
industry_average_s2: 行业均值S2 (系统配置)
|
||||
social_media_spread_s3: 社交媒体传播度S3 (API获取)
|
||||
|
||||
Returns:
|
||||
float: 流量因子B12
|
||||
"""
|
||||
# 避免除零和对数计算错误
|
||||
if industry_average_s2 <= 0:
|
||||
raise ValueError("行业均值S2必须大于0")
|
||||
|
||||
if search_index_s1 <= 0:
|
||||
# 如果搜索指数为0或负数,使用最小值避免对数计算错误
|
||||
search_index_s1 = 1.0
|
||||
|
||||
# ,不进行任何拆分
|
||||
traffic_factor = (math.log(search_index_s1 / industry_average_s2) * 0.3 +
|
||||
social_media_spread_s3 * 0.7)
|
||||
|
||||
return traffic_factor
|
||||
|
||||
def calculate_search_index_s1(self,
|
||||
baidu_index: float,
|
||||
wechat_index: float,
|
||||
weibo_index: float) -> float:
|
||||
"""
|
||||
计算近30天搜索指数S1
|
||||
|
||||
近30天搜索指数S1 = 百度搜索指数 × 0.4 + 微信搜索指数 × 0.3 + 微博搜索指数 × 0.3
|
||||
|
||||
Args:
|
||||
baidu_index: 百度搜索指数 (API获取)
|
||||
wechat_index: 微信搜索指数 (API获取)
|
||||
weibo_index: 微博搜索指数 (API获取)
|
||||
|
||||
Returns:
|
||||
float: 近30天搜索指数S1
|
||||
"""
|
||||
#
|
||||
search_index = (baidu_index * 0.4 +
|
||||
wechat_index * 0.3 +
|
||||
weibo_index * 0.3)
|
||||
|
||||
return search_index
|
||||
|
||||
def calculate_social_media_spread_s3(self,
|
||||
interaction_index: float,
|
||||
coverage_index: float,
|
||||
conversion_efficiency: float) -> float:
|
||||
"""
|
||||
计算社交媒体传播度S3
|
||||
|
||||
社交媒体传播度S3 = 互动量指数 × 0.4 + 覆盖人群指数 × 0.3 + 转化效率 × 0.3
|
||||
|
||||
Args:
|
||||
interaction_index: 互动量指数 (API获取)
|
||||
coverage_index: 覆盖人群指数 (API获取)
|
||||
conversion_efficiency: 转化效率 (用户填写)
|
||||
|
||||
Returns:
|
||||
float: 社交媒体传播度S3
|
||||
"""
|
||||
#
|
||||
social_media_spread = (interaction_index * 0.4 +
|
||||
coverage_index * 0.3 +
|
||||
conversion_efficiency * 0.3)
|
||||
|
||||
return social_media_spread
|
||||
|
||||
def calculate_interaction_index(self,
|
||||
likes: int,
|
||||
comments: int,
|
||||
shares: int) -> float:
|
||||
"""
|
||||
计算互动量指数
|
||||
|
||||
互动量指数 = (点赞 + 评论 + 转发) / 1000
|
||||
|
||||
Args:
|
||||
likes: 点赞数 (API获取)
|
||||
comments: 评论数 (API获取)
|
||||
shares: 转发数 (API获取)
|
||||
|
||||
Returns:
|
||||
float: 互动量指数
|
||||
"""
|
||||
#
|
||||
interaction_index = (likes + comments + shares) / 1000.0
|
||||
|
||||
return interaction_index
|
||||
|
||||
def calculate_coverage_index(self, followers: int) -> float:
|
||||
"""
|
||||
计算覆盖人群指数
|
||||
|
||||
覆盖人群指数 = 粉丝数 / 10000
|
||||
|
||||
Args:
|
||||
followers: 粉丝数 (API获取)
|
||||
|
||||
Returns:
|
||||
float: 覆盖人群指数
|
||||
"""
|
||||
#
|
||||
coverage_index = followers / 10000.0
|
||||
|
||||
return coverage_index
|
||||
|
||||
def calculate_conversion_efficiency(self,
|
||||
click_count: int,
|
||||
view_count: int) -> float:
|
||||
"""
|
||||
计算转化效率
|
||||
|
||||
:
|
||||
转化效率 = 商品链接点击量 / 内容浏览量
|
||||
|
||||
Args:
|
||||
click_count: 商品链接点击量 (用户填写)
|
||||
view_count: 内容浏览量 (用户填写)
|
||||
|
||||
Returns:
|
||||
float: 转化效率
|
||||
"""
|
||||
if view_count == 0:
|
||||
return 0.0
|
||||
|
||||
#
|
||||
conversion_efficiency = click_count / view_count
|
||||
|
||||
return conversion_efficiency
|
||||
|
||||
|
||||
class PlatformDataProcessor:
|
||||
"""平台数据处理类"""
|
||||
|
||||
@staticmethod
|
||||
def parse_platform_accounts(platform_data: str) -> Dict[str, str]:
|
||||
"""
|
||||
解析平台账号数据
|
||||
|
||||
输入格式:B站:12345678\n抖音:22334455
|
||||
|
||||
Args:
|
||||
platform_data: 平台账号数据字符串 (用户填写)
|
||||
|
||||
Returns:
|
||||
Dict[str, str]: 平台账号字典
|
||||
"""
|
||||
accounts = {}
|
||||
lines = platform_data.strip().split('\n')
|
||||
|
||||
for line in lines:
|
||||
if ':' in line or ':' in line:
|
||||
separator = ':' if ':' in line else ':'
|
||||
parts = line.split(separator, 1)
|
||||
if len(parts) == 2:
|
||||
platform = parts[0].strip()
|
||||
account = parts[1].strip()
|
||||
accounts[platform] = account
|
||||
|
||||
return accounts
|
||||
|
||||
@staticmethod
|
||||
def calculate_multi_platform_interaction(platform_data: Dict[str, Dict]) -> Tuple[float, float]:
|
||||
"""
|
||||
计算多平台互动数据
|
||||
|
||||
Args:
|
||||
platform_data: 平台数据字典,格式为 {平台名: {likes: int, comments: int, shares: int, followers: int}} (API获取)
|
||||
|
||||
Returns:
|
||||
Tuple[float, float]: (互动量指数, 覆盖人群指数)
|
||||
"""
|
||||
total_interactions = 0
|
||||
total_followers = 0
|
||||
|
||||
for platform, data in platform_data.items():
|
||||
# 计算互动量
|
||||
interactions = data.get('likes', 0) + data.get('comments', 0) + data.get('shares', 0)
|
||||
total_interactions += interactions
|
||||
|
||||
# 计算粉丝数
|
||||
followers = data.get('followers', 0)
|
||||
total_followers += followers
|
||||
|
||||
# 计算指数
|
||||
calculator = TrafficFactorB12Calculator()
|
||||
interaction_index = calculator.calculate_interaction_index(
|
||||
total_interactions, 0, 0 # 已经包含了所有互动数据
|
||||
)
|
||||
coverage_index = calculator.calculate_coverage_index(total_followers)
|
||||
|
||||
return interaction_index, coverage_index
|
||||
|
||||
|
||||
# 热度评分相关函数
|
||||
def calculate_heat_score(daily_views: float, favorites: int) -> float:
|
||||
"""
|
||||
计算热度分
|
||||
|
||||
热度评分标准:
|
||||
- 高热度:近7日日均浏览量 > 1000,或收藏数 > 100 → 1.0
|
||||
- 中热度:近7日日均浏览量 ∈ [100, 1000],或收藏数 ∈ [20, 100] → 0.6
|
||||
- 低热度:近7日日均浏览量 < 100,且收藏数 < 20 → 0.2
|
||||
- 无数据:无任何浏览与互动数据 → 0.0
|
||||
|
||||
Args:
|
||||
daily_views: 近7日日均浏览量 (API获取)
|
||||
favorites: 收藏数 (API获取)
|
||||
|
||||
Returns:
|
||||
float: 热度分
|
||||
"""
|
||||
if daily_views > 1000 or favorites > 100:
|
||||
return 1.0
|
||||
elif (daily_views >= 100 and daily_views <= 1000) or (favorites >= 20 and favorites <= 100):
|
||||
return 0.6
|
||||
elif daily_views < 100 and favorites < 20:
|
||||
return 0.2
|
||||
else:
|
||||
return 0.0
|
||||
|
||||
|
||||
# 示例使用
|
||||
if __name__ == "__main__":
|
||||
# 创建计算器实例
|
||||
calculator = TrafficFactorB12Calculator()
|
||||
processor = PlatformDataProcessor()
|
||||
|
||||
# 示例数据
|
||||
# 搜索指数数据 (API获取)
|
||||
baidu_index = 6000.0
|
||||
wechat_index = 4500.0
|
||||
weibo_index = 3000.0
|
||||
|
||||
# 行业均值 (系统配置)
|
||||
industry_average = 5000.0
|
||||
|
||||
# 平台账号数据 (用户填写)
|
||||
platform_accounts = "B站:12345678\n抖音:22334455"
|
||||
accounts = processor.parse_platform_accounts(platform_accounts)
|
||||
|
||||
# 平台互动数据 (API获取)
|
||||
platform_data = {
|
||||
"B站": {
|
||||
"likes": 1000,
|
||||
"comments": 200,
|
||||
"shares": 50,
|
||||
"followers": 50000
|
||||
},
|
||||
"抖音": {
|
||||
"likes": 2000,
|
||||
"comments": 300,
|
||||
"shares": 100,
|
||||
"followers": 30000
|
||||
}
|
||||
}
|
||||
|
||||
# 转化效率数据 (用户填写)
|
||||
click_count = 20
|
||||
view_count = 200
|
||||
|
||||
# 计算各项指标
|
||||
search_index_s1 = calculator.calculate_search_index_s1(baidu_index, wechat_index, weibo_index)
|
||||
interaction_index, coverage_index = processor.calculate_multi_platform_interaction(platform_data)
|
||||
conversion_efficiency = calculator.calculate_conversion_efficiency(click_count, view_count)
|
||||
social_media_spread_s3 = calculator.calculate_social_media_spread_s3(
|
||||
interaction_index, coverage_index, conversion_efficiency
|
||||
)
|
||||
|
||||
# 计算流量因子B12
|
||||
traffic_factor = calculator.calculate_traffic_factor_b12(
|
||||
search_index_s1, industry_average, social_media_spread_s3
|
||||
)
|
||||
|
||||
print(f"近30天搜索指数S1: {search_index_s1:.2f}")
|
||||
print(f"行业均值S2: {industry_average:.2f}")
|
||||
print(f"互动量指数: {interaction_index:.4f}")
|
||||
print(f"覆盖人群指数: {coverage_index:.4f}")
|
||||
print(f"转化效率: {conversion_efficiency:.4f}")
|
||||
print(f"社交媒体传播度S3: {social_media_spread_s3:.4f}")
|
||||
print(f"流量因子B12: {traffic_factor:.4f}")
|
||||
Loading…
x
Reference in New Issue
Block a user