# 估值计算报告 ## 基本信息 | 字段 | 值 | |------|----| | 估值ID | 38 | | 资产名称 | 蜀锦 | | 所属机构 | 成都古蜀蜀锦研究所 | | 所属行业 | 纺织业 | | 非遗等级 | 0 | | 创建时间 | 2025-11-26 10:38:50 | ## 详细计算过程 #### 1.最终估值A > 最终估值A = 模型估值B × 0.7 + 市场估值C × 0.3 **状态**: ✅ 已完成 **输入参数**: ```json { "model_data": { "risky_data": { "lowest_price": 1580.0, "highest_price": 3980.0, "inheritor_ages": [ 0, 0, 2 ], "lawsuit_status": 0.0 }, "cultural_data": { "douyin_views": 67000.0, "bilibili_views": 0, "kuaishou_views": 0, "offline_sessions": 50.0, "cross_border_depth": 0.0, "normalized_entropy": 9, "structure_complexity": 1.5, "historical_inheritance": 18.0, "inheritor_level_coefficient": 0.7 }, "economic_data": { "likes": 67000.0, "shares": 500.0, "comments": 800.0, "esg_score": 5.0, "link_views": 296000.0, "patent_count": 0.0, "patent_score": 3.0, "sales_volume": 5000.0, "funding_support": 0.0, "search_index_s1": 0.7, "innovation_ratio": 18.93491124260355, "popularity_score": 7.0, "three_year_income": [ 169.0, 169.0, 169.0 ], "infringement_score": 0.0, "policy_match_score": 5, "industry_average_s2": 2200.0, "implementation_stage": 10.0, "industry_coefficient": -0.5 } }, "market_data": { "manual_bids": [ 3980.0, 1580.0, 2780.0 ], "issuance_level": "限量:总发行份数 ≤100份", "collection_count": 67000, "expert_valuations": [], "daily_browse_volume": 296000.0, "recent_market_activity": "近一周", "weighted_average_price": {} } } ``` **输出结果**: ```json { "model_value_b": 345.2993048233941, "final_value_ab": 241.99307337637583, "market_value_c": 0.9452, "model_duration_ms": 1911, "total_duration_ms": 2440, "market_duration_ms": 443 } ``` ##### 1.1.模型估值B 计算公式: `模型估值B = (经济价值B1 × 0.7 + 文化价值B2 × 0.3) × 风险调整系数B3` **状态**: ✅ 已完成 **输入参数**: ```json { "risky_data": { "lowest_price": 1580.0, "highest_price": 3980.0, "inheritor_ages": [ 0, 0, 2 ], "lawsuit_status": 0.0 }, "cultural_data": { "douyin_views": 67000.0, "bilibili_views": 0, "kuaishou_views": 0, "offline_sessions": 50.0, "cross_border_depth": 0.0, "normalized_entropy": 9, "structure_complexity": 1.5, "historical_inheritance": 18.0, "inheritor_level_coefficient": 0.7 }, "economic_data": { "likes": 67000.0, "shares": 500.0, "comments": 800.0, "esg_score": 5.0, "link_views": 296000.0, "patent_count": 0.0, "patent_score": 3.0, "sales_volume": 5000.0, "funding_support": 0.0, "search_index_s1": 0.7, "innovation_ratio": 18.93491124260355, "popularity_score": 7.0, "three_year_income": [ 169.0, 169.0, 169.0 ], "infringement_score": 0.0, "policy_match_score": 5, "industry_average_s2": 2200.0, "implementation_stage": 10.0, "industry_coefficient": -0.5 } } ``` **输出结果**: ```json { "risk_details": { "legal_risk": 0.0, "market_risk": 0.0, "risk_value_b3": 0.92, "risk_score_sum": 0.3, "inheritance_risk": 10.0 }, "model_value_b": 345.2993048233941, "risk_value_b3": 0.92, "cultural_details": { "pattern_gene_b22": 810.0, "cultural_value_b2": 37.972824, "living_heritage_b21": 9.28804 }, "economic_details": { "basic_value_b11": 16.77359467455621, "legal_strength_l": 3.3000000000000003, "economic_value_b1": 519.9049773282518, "financial_value_f": 33.8, "traffic_factor_b12": 16.711681022311755, "policy_multiplier_b13": 1.75, "development_potential_d": 6.680473372781065 }, "cultural_value_b2": 37.972824, "economic_value_b1": 519.9049773282518 } ``` ###### 1.1.1.经济价值B1 计算公式: `经济价值B1 = 基础价值B11 × (1 + 流量因子B12) × 政策乘数B13` **状态**: ✅ 已完成 **输入参数**: ```json { "likes": 67000.0, "shares": 500.0, "comments": 800.0, "esg_score": 5.0, "link_views": 296000.0, "patent_count": 0.0, "patent_score": 3.0, "sales_volume": 5000.0, "funding_support": 0.0, "search_index_s1": 0.7, "innovation_ratio": 18.93491124260355, "popularity_score": 7.0, "three_year_income": [ 169.0, 169.0, 169.0 ], "infringement_score": 0.0, "policy_match_score": 5, "industry_average_s2": 2200.0, "implementation_stage": 10.0, "industry_coefficient": -0.5 } ``` **输出结果**: ```json { "basic_value_b11": 16.77359467455621, "legal_strength_l": 3.3000000000000003, "economic_value_b1": 519.9049773282518, "financial_value_f": 33.8, "traffic_factor_b12": 16.711681022311755, "policy_multiplier_b13": 1.75, "development_potential_d": 6.680473372781065 } ``` ###### 1.1.1.1.基础价值B11 计算公式: `基础价值B11 = 财务价值F × (0.45 + 0.05 × 行业系数I) + 法律强度L × (0.35 + 0.05 × 行业系数I) + 发展潜力D × 0.2` **状态**: ✅ 已完成 **输入参数**: ```json { "legal_strength_l": 3.3000000000000003, "financial_value_f": 33.8, "industry_coefficient": -0.5, "development_potential_d": 6.680473372781065 } ``` **输出结果**: ```json { "basic_value_b11": 16.77359467455621, "legal_strength_l": 3.3000000000000003, "financial_value_f": 33.8, "industry_coefficient": -0.5, "development_potential_d": 6.680473372781065 } ``` ###### 1.1.1.1.1.财务价值F 计算公式: `财务价值F = [3年内年均收益 × (1 + 增长率)^5] ÷ 5` **状态**: ✅ 已完成 **输入参数**: ```json { "three_year_income": [ 169.0, 169.0, 169.0 ] } ``` **输出结果**: ```json { "financial_value_f": 33.8 } ``` ###### 1.1.1.1.2.法律强度L 计算公式: `法律强度L = 专利分 × 0.4 + 普及分 × 0.3 + 侵权分 × 0.3` **状态**: ✅ 已完成 **输入参数**: ```json { "patent_score": 3.0, "popularity_score": 7.0, "infringement_score": 0.0 } ``` **输出结果**: ```json { "legal_strength_l": 3.3000000000000003 } ``` ###### 1.1.1.1.3.发展潜力D 计算公式: `发展潜力D = 专利分 × 0.5 + ESG分 × 0.2 + 创新投入比 × 0.3` **状态**: ✅ 已完成 **输入参数**: ```json { "esg_score": 5.0, "patent_count": 0.0, "innovation_ratio": 18.93491124260355 } ``` **输出结果**: ```json { "development_potential_d": 6.680473372781065 } ``` ###### 1.1.1.1.4.行业系数I 计算公式: `行业系数I = (目标行业平均ROE - 基准行业ROE) ÷ 基准行业ROE` **状态**: ✅ 已完成 **输入参数**: ```json { "industry_coefficient": -0.5 } ``` **输出结果**: ```json { "industry_coefficient": -0.5 } ``` ###### 1.1.1.2.流量因子B12 计算公式: `流量因子B12 = ln(S1 ÷ S2) × 0.3 + 社交媒体传播度S3 × 0.7` **状态**: ✅ 已完成 **输入参数**: ```json { "search_index_s1": 0.7, "industry_average_s2": 2200.0 } ``` **输出结果**: ```json { "traffic_factor_b12": 16.711681022311755, "social_media_spread_s3": 27.32506756756757 } ``` ###### 1.1.1.2.1.互动量指数 计算公式: `互动量指数 = (点赞 + 评论 + 分享) ÷ 1000` **状态**: ✅ 已完成 **输入参数**: ```json { "likes": 67000.0, "shares": 500.0, "comments": 800.0 } ``` **输出结果**: ```json { "interaction_index": 68.3 } ``` ###### 1.1.1.2.2.覆盖人群指数 计算公式: `覆盖人群指数 = 粉丝数 ÷ 10000` **状态**: ✅ 已完成 **输入参数**: ```json { "followers": 0 } ``` **输出结果**: ```json { "coverage_index": 0.0 } ``` ###### 1.1.1.2.3.转化效率 计算公式: `转化效率 = 商品链接点击量 ÷ 内容浏览量` **状态**: ✅ 已完成 **输入参数**: ```json { "link_views": 296000.0, "sales_volume": 5000.0 } ``` **输出结果**: ```json { "conversion_efficiency": 0.016891891891891893 } ``` ###### 1.1.1.2.4.社交媒体传播度S3 计算公式: `社交媒体传播度S3 = 互动量指数 × 0.4 + 覆盖人群指数 × 0.3 + 转化效率 × 0.3` **状态**: ✅ 已完成 **输入参数**: ```json { "coverage_index": 0.0, "interaction_index": 68.3, "conversion_efficiency": 0.016891891891891893 } ``` **输出结果**: ```json { "social_media_spread_s3": 27.32506756756757 } ``` ###### 1.1.1.3.政策乘数B13 计算公式: `政策乘数B13 = 1 + 政策契合度评分P × 0.15,其中 P = 政策匹配度 × 0.4 + 实施阶段评分 × 0.3 + 资金支持度 × 0.3` **状态**: ✅ 已完成 **输入参数**: ```json { "funding_support": 0.0, "policy_match_score": 5, "implementation_stage": 10.0 } ``` **输出结果**: ```json { "policy_multiplier_b13": 1.75, "policy_compatibility_score": 5.0 } ``` ###### 1.1.2.文化价值B2 计算公式: `文化价值B2 = 活态传承系数B21 × 0.6 + (纹样基因值B22 ÷ 10) × 0.4` **状态**: ✅ 已完成 **输入参数**: ```json { "douyin_views": 67000.0, "bilibili_views": 0, "kuaishou_views": 0, "offline_sessions": 50.0, "cross_border_depth": 0.0, "normalized_entropy": 9, "structure_complexity": 1.5, "historical_inheritance": 18.0, "inheritor_level_coefficient": 0.7 } ``` **输出结果**: ```json { "pattern_gene_b22": 810.0, "cultural_value_b2": 37.972824, "living_heritage_b21": 9.28804 } ``` ###### 1.1.2.1.活态传承系数B21 计算公式: `活态传承系数B21 = 传承人等级系数 × 0.4 + 教学传播频次 × 0.3 + 跨界合作深度 × 0.3` **状态**: ✅ 已完成 **输入参数**: ```json { "douyin_views": 67000.0, "bilibili_views": 0, "kuaishou_views": 0, "offline_sessions": 50.0, "cross_border_depth": 0.0, "inheritor_level_coefficient": 0.7 } ``` **输出结果**: ```json { "teaching_frequency": 30.0268, "living_heritage_b21": 9.28804 } ``` ###### 1.1.2.1.1.教学传播频次 计算公式: `教学传播频次 = 线下传习次数 × 0.6 + 线上课程点击量(万) × 0.4` **状态**: ✅ 已完成 **输入参数**: ```json { "douyin_views": 67000.0, "bilibili_views": 0, "kuaishou_views": 0, "offline_sessions": 50.0 } ``` **输出结果**: ```json { "teaching_frequency": 30.0268 } ``` ###### 1.1.2.2.纹样基因值B22 计算公式: `纹样基因值B22 = (结构复杂度SC × 0.6 + 归一化信息熵H × 0.4) × 历史传承度HI × 10` **状态**: ✅ 已完成 **输入参数**: ```json { "normalized_entropy": 9, "structure_complexity": 1.5, "historical_inheritance": 18.0 } ``` **输出结果**: ```json { "pattern_gene_b22": 810.0 } ``` ###### 1.1.3.风险调整系数B3 计算公式: `风险调整系数B3 = 0.8 + 风险评分总和R × 0.4,其中 R = 市场风险 × 0.3 + 法律风险 × 0.4 + 传承风险 × 0.3` **状态**: ✅ 已完成 **输入参数**: ```json { "lowest_price": 1580.0, "highest_price": 3980.0, "inheritor_ages": [ 0, 0, 2 ], "lawsuit_status": 0.0 } ``` **输出结果**: ```json { "legal_risk": 0.0, "market_risk": 0.0, "risk_value_b3": 0.92, "risk_score_sum": 0.3, "inheritance_risk": 10.0 } ``` ###### 1.1.3.1.市场风险 计算公式: `市场风险依据价格波动率:波动率 ≤5% 计10分,5-15%计5分,>15%计0分` **状态**: ✅ 已完成 **输入参数**: ```json { "lowest_price": 1580.0, "highest_price": 3980.0 } ``` **输出结果**: ```json { "market_risk": 0.0 } ``` ###### 1.1.3.2.法律风险 计算公式: `法律风险根据诉讼状态评分(无诉讼/已解决/未解决)` **状态**: ✅ 已完成 **输入参数**: ```json { "lawsuit_status": 0.0 } ``` **输出结果**: ```json { "legal_risk": 0.0 } ``` ###### 1.1.3.3.传承风险 计算公式: `传承风险依据传承人年龄:≤50岁10分,50-70岁5分,>70岁0分,取最高分` **状态**: ✅ 已完成 **输入参数**: ```json { "inheritor_ages": [ 0, 0, 2 ] } ``` **输出结果**: ```json { "inheritance_risk": 10.0 } ``` ##### 1.2.市场估值C 计算公式: `市场估值C = 市场竞价C1 × 热度系数C2 × 稀缺性乘数C3 × 时效性衰减C4` **状态**: ✅ 已完成 **输入参数**: ```json { "manual_bids": [ 3980.0, 1580.0, 2780.0 ], "issuance_level": "限量:总发行份数 ≤100份", "collection_count": 67000, "expert_valuations": [], "daily_browse_volume": 296000.0, "recent_market_activity": "近一周", "weighted_average_price": {} } ``` **输出结果**: ```json { "market_value_c": 0.9452, "market_bidding_c1": 2780.0, "temporal_decay_c4": 1.0, "heat_coefficient_c2": 2.0, "scarcity_multiplier_c3": 1.7 } ``` ###### 1.2.1.市场竞价C1 计算公式: `市场竞价C1 结合历史交易价格、人工竞价与专家估值的加权结果` **状态**: ✅ 已完成 **输入参数**: ```json { "manual_bids": [ 3980.0, 1580.0, 2780.0 ], "expert_valuations": [], "weighted_average_price": {} } ``` **输出结果**: ```json { "market_bidding_c1": 2780.0 } ``` ###### 1.2.2.热度系数C2 计算公式: `热度系数C2 = 1 + 浏览热度分(依据日均浏览量与收藏数量)` **状态**: ✅ 已完成 **输入参数**: ```json { "collection_count": 67000, "daily_browse_volume": 296000.0 } ``` **输出结果**: ```json { "heat_coefficient_c2": 2.0 } ``` ###### 1.2.3.稀缺性乘数C3 计算公式: `稀缺性乘数C3 = 1 + 稀缺等级分` **状态**: ✅ 已完成 **输入参数**: ```json { "issuance_level": "限量:总发行份数 ≤100份" } ``` **输出结果**: ```json { "scarcity_multiplier_c3": 1.7 } ``` ###### 1.2.4.时效性衰减C4 计算公式: `时效性衰减C4 依据距最近市场活动天数的衰减系数` **状态**: ✅ 已完成 **输入参数**: ```json { "recent_market_activity": "近一周" } ``` **输出结果**: ```json { "temporal_decay_c4": 1.0 } ```