guzhi/app/api/v1/calculation/calcuation.py

449 lines
20 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

from fastapi import APIRouter, Depends, HTTPException, status
from typing import Optional, List, Dict, Any
import json
import asyncio
import time,random
from app.controllers.user_valuation import user_valuation_controller
from app.schemas.valuation import (
UserValuationCreate,
UserValuationQuery,
UserValuationList,
UserValuationOut,
UserValuationDetail
)
from app.schemas.base import Success, SuccessExtra
from app.utils.app_user_jwt import get_current_app_user_id
from app.utils.calculation_engine import FinalValueACalculator
from app.utils.calculation_engine.drp import DynamicPledgeRateCalculator
from app.utils.calculation_engine.economic_value_b1.sub_formulas.basic_value_b11 import calculate_popularity_score, \
calculate_infringement_score, calculate_patent_usage_score
from app.utils.calculation_engine.economic_value_b1.sub_formulas.traffic_factor_b12 import calculate_search_index_s1
from app.log.log import logger
from app.models.esg import ESG
from app.models.industry import Industry
from app.models.policy import Policy
from app.utils.universal_api_manager import universal_api
from app.utils.wechat_index_calculator import wechat_index_calculator
app_valuations_router = APIRouter(tags=["用户端估值评估"])
@app_valuations_router.post("/calculation", summary="计算估值")
async def calculate_valuation(
data: UserValuationCreate,
user_id: int = Depends(get_current_app_user_id)
):
"""
计算估值评估
根据用户提交的估值评估数据调用计算引擎进行经济价值B1计算
请求示例JSON (仅包含用户填写部分):
{
"asset_name": "传统刺绣工艺",
"institution": "某文化传承机构",
"industry": "传统手工艺",
// 财务状况 (用户填写)
"annual_revenue": "500", // 近12个月机构营收/万元
"rd_investment": "50", // 近12个月机构研发投入/万元
"three_year_income": [400, 450, 500], // 近三年机构收益/万元
// 非遗等级与技术 (用户填写)
"inheritor_level": "国家级传承人", // 非遗传承人等级
"inheritor_ages": [45, 60, 75], // 传承人年龄列表
"heritage_level": "国家级", // 非遗等级
"patent_application_no": "CN202310123456.7", // 专利申请号
"patent_remaining_years": "15", // 专利剩余年限
"historical_evidence": { // 历史证明证据及数量
"历史文献": 3,
"考古发现": 2,
"传承谱系": 5
},
"pattern_images": ["demo.jpg"], // 非遗纹样图片
// 非遗应用与推广 (用户填写)
"application_maturity": "成熟应用", // 应用成熟度
"application_coverage": "全国覆盖", // 应用覆盖范围
"cooperation_depth": "0.5", // 跨界合作深度
"offline_activities": "12", // 近12个月线下宣讲活动次数
"online_accounts": [ // 线上宣传账号信息
{"platform": "抖音", "account": "传统刺绣大师"},
{"platform": "微博", "account": "非遗传承人"}
],
// 市场信息 (用户填写)
"sales_volume": "1000", // 近12个月销售量
"link_views": "5000", // 近12个月链接浏览量
"circulation": "限量", // 发行量
"last_market_activity": "2024-01-15", // 最近一次市场活动时间
"price_fluctuation": [95.0, 105.0], // 近30天价格波动区间
"manual_bids": [48000.0, 50000.0, 52000.0], // 手动收集的竞价列表
// 政策相关 (用户填写)
"funding_status": "国家级资助", // 资金支持情况
"implementation_stage": "成熟应用" // 实施阶段
}
API获取参数 (系统自动获取,无需用户填写):
- 搜索指数: 百度、微信、微博搜索指数
- 社交媒体数据: 点赞数、评论数、转发数、粉丝数
- 交易数据: 近3个月加权平均价格
- 热度数据: 近7日日均浏览量、收藏数
- ESG评分: 根据行业自动匹配
- 行业系数: 根据行业ROE计算
- 政策匹配度: 根据行业自动匹配
- 专利验证: 通过API验证专利有效性
- 侵权记录: 通过API查询侵权诉讼历史
"""
try:
start_ts = time.monotonic()
logger.info("valuation.calc_start user_id={} asset_name={} industry={}", user_id, getattr(data, 'asset_name', None), getattr(data, 'industry', None))
# 根据行业查询 ESG 基准分(优先用行业名称匹配,如用的是行业代码就把 name 改成 code
esg_obj = None
industry_obj = None
policy_obj = None
try:
esg_obj = await asyncio.wait_for(ESG.filter(name=data.industry).first(), timeout=2.0)
except Exception as e:
logger.warning("valuation.esg_fetch_timeout industry={} err={}", data.industry, repr(e))
esg_score = float(getattr(esg_obj, 'number', 0.0) or 0.0)
# 根据行业查询 行业修正系数与ROE
try:
industry_obj = await asyncio.wait_for(Industry.filter(name=data.industry).first(), timeout=2.0)
except Exception as e:
logger.warning("valuation.industry_fetch_timeout industry={} err={}", data.industry, repr(e))
fix_num_score = getattr(industry_obj, 'fix_num', 0.0) or 0.0
# 根据行业查询 政策匹配度
try:
policy_obj = await asyncio.wait_for(Policy.filter(name=data.industry).first(), timeout=2.0)
except Exception as e:
logger.warning("valuation.policy_fetch_timeout industry={} err={}", data.industry, repr(e))
policy_match_score = getattr(policy_obj, 'score', 0.0) or 0.0
# 提取 经济价值B1 计算参数
input_data_by_b1 = await _extract_calculation_params_b1(data)
# ESG关联价值 ESG分 (0-10分)
input_data_by_b1["esg_score"] = esg_score
# 行业修正系数I
input_data_by_b1["industry_coefficient"] = fix_num_score
# 政策匹配度
input_data_by_b1["policy_match_score"] = policy_match_score
# 获取专利信息 TODO 参数
try:
patent_data = universal_api.query_patent_info("未找到 企业名称、企业统代、企业注册号")
patent_dict = patent_data if isinstance(patent_data, dict) else {}
inner_data = patent_dict.get("data", {}) if isinstance(patent_dict.get("data", {}), dict) else {}
data_list = inner_data.get("dataList", [])
data_list = data_list if isinstance(data_list, list) else []
# 验证 专利剩余年限
# TODO 无法验证 专利剩余保护期>10年(10分)5-10年(7分)<5年(3分)
# 发展潜力D相关参数 专利数量
# 查询匹配申请号的记录集合
matched = [item for item in data_list if isinstance(item, dict) and item.get("SQH") == getattr(data, 'patent_application_no', None)]
if matched:
patent_count = calculate_patent_usage_score(len(matched))
input_data_by_b1["patent_count"] = float(patent_count)
else:
input_data_by_b1["patent_count"] = 0.0
except Exception as e:
logger.warning("valuation.patent_api_error err={}", repr(e))
input_data_by_b1["patent_count"] = 0.0
# 提取 文化价值B2 计算参数
input_data_by_b2 = await _extract_calculation_params_b2(data)
# 提取 风险调整系数B3 计算参数
input_data_by_b3 = await _extract_calculation_params_b3(data)
# 提取 市场估值C 参数
input_data_by_c = await _extract_calculation_params_c(data)
input_data = {
# 模型估值B 相关参数
"model_data": {
# 经济价值B1 参数
"economic_data": input_data_by_b1,
# 文化价值B2 参数
"cultural_data": input_data_by_b2,
# 风险调整参数 B3
"risky_data": input_data_by_b3,
},
# 市场估值C 参数
"market_data": input_data_by_c,
}
calculator = FinalValueACalculator()
# 计算最终估值A统一计算
calculation_result = await calculator.calculate_complete_final_value_a(input_data)
# 计算动态质押
drp_c = DynamicPledgeRateCalculator()
'''
monthly_amount (float): 月交易额(万元)
heritage_level (str): 非遗等级
'''
# 解析月交易额字符串为数值
monthly_amount = drp_c.parse_monthly_transaction_amount(data.monthly_transaction_amount or "")
drp_result = drp_c.calculate_dynamic_pledge_rate(monthly_amount, data.heritage_asset_level)
# 结构化日志:关键分值
try:
duration_ms = int((time.monotonic() - start_ts) * 1000)
logger.info(
"valuation.calc_done user_id={} duration_ms={} model_value_b={} market_value_c={} final_value_ab={}",
user_id,
duration_ms,
calculation_result.get('model_value_b'),
calculation_result.get('market_value_c'),
calculation_result.get('final_value_ab'),
)
except Exception:
pass
# 创建估值评估记录
result = await user_valuation_controller.create_valuation(
user_id=user_id,
data=data,
calculation_result=calculation_result,
calculation_input={
'model_data': {
'economic_data': list(input_data.get('model_data', {}).get('economic_data', {}).keys()),
'cultural_data': list(input_data.get('model_data', {}).get('cultural_data', {}).keys()),
'risky_data': list(input_data.get('model_data', {}).get('risky_data', {}).keys()),
},
'market_data': list(input_data.get('market_data', {}).keys()),
},
drp_result=drp_result
)
# 组装返回
result_dict = json.loads(result.model_dump_json())
result_dict['calculation_result'] = calculation_result
result_dict['calculation_input'] = {
'model_data': {
'economic_data': list(input_data.get('model_data', {}).get('economic_data', {}).keys()),
'cultural_data': list(input_data.get('model_data', {}).get('cultural_data', {}).keys()),
'risky_data': list(input_data.get('model_data', {}).get('risky_data', {}).keys()),
},
'market_data': list(input_data.get('market_data', {}).keys()),
}
return Success(data=result_dict, msg="估值计算完成")
except Exception as e:
logger.error("valuation.calc_failed user_id={} err={}", user_id, repr(e))
raise HTTPException(status_code=400, detail=f"计算失败: {str(e)}")
async def _extract_calculation_params_b1(data: UserValuationCreate) -> Dict[str, Any]:
"""
从用户提交的数据中提取计算所需的参数
Args:
data: 用户提交的估值评估数据
Returns:
Dict: 计算所需的参数字典
"""
# 基础价值B11相关参数
# 财务价值所需数据 从近三年收益计算
three_year_income = data.three_year_income or [0, 0, 0]
# 法律强度L相关参数
# 普及地域分值 默认 7分
popularity_score = calculate_popularity_score(data.application_coverage)
# 侵权分 默认 6 TODO 需要使用第三方API 无侵权记录(10分),历史侵权已解决(6分),现存纠纷(2分)
infringement_score = calculate_infringement_score("无侵权信息")
infringement_score = 0
# 创新投入比 = (研发费用/营收) * 100
try:
rd_investment = float(data.rd_investment or 0)
annual_revenue = float(data.annual_revenue or 1) # 避免除零
innovation_ratio = (rd_investment / annual_revenue) * 100 if annual_revenue > 0 else 0
except (ValueError, TypeError):
innovation_ratio = 0.0
# 流量因子B12相关参数
# 近30天搜索指数S1 - 使用微信指数除以10计算
wechat_index = wechat_index_calculator.process_wechat_index_response(universal_api.wx_index(data.asset_name)) # 通过资产信息获取微信指数
search_index_s1 = calculate_search_index_s1(wechat_index) # S1 = 微信指数 / 10
# 行业均值S2 TODO 系统内置 未找到相关内容
industry_average_s2 = 0.0
# 社交媒体传播度S3 - TODO 需要使用第三方API,click_count view_count 未找到对应参数
# likes: 点赞数(API获取)
# comments: 评论数(API获取)
# shares: 转发数(API获取)
# followers: 粉丝数
# click_count: 商品链接点击量(用户填写) sales_volume 使用 sales_volume 销售量
# view_count: 内容浏览量(用户填写) link_views
# 政策乘数B13相关参数
# 政策契合度评分P - 根据行业和资助情况计算
# 实施阶段
implementation_stage = data.application_maturity
# 资金支持
funding_support = data.funding_status
return {
# 基础价值B11相关参数
'three_year_income': three_year_income,
'popularity_score': popularity_score,
'infringement_score': infringement_score,
'innovation_ratio': innovation_ratio,
# 流量因子B12相关参数
'search_index_s1': search_index_s1,
'industry_average_s2': industry_average_s2,
# 'social_media_spread_s3': social_media_spread_s3,
# 这些社交数据暂未来源置为0后续接入API再填充
'likes': 0,
'comments': 0,
'shares': 0,
# followers 非当前计算用键,先移除避免干扰
# click_count 与 view_count 目前未参与计算,先移除
# 政策乘数B13相关参数
'implementation_stage': implementation_stage,
'funding_support':funding_support
}
# 获取 文化价值B2 相关参数
async def _extract_calculation_params_b2(data: UserValuationCreate) -> Dict[str, Any]:
"""
argrg:
data: 用户提交的估值评估数据
retus:
Dict: 计算所需的参数字典
"""
# 导入计算器来转换传承人等级
from app.utils.calculation_engine.cultural_value_b2.sub_formulas.living_heritage_b21 import LivingHeritageB21Calculator
# 活态传承系数B21 县官参数
living_heritage_calculator = LivingHeritageB21Calculator()
inheritor_level = data.inheritor_level or "市级传承人" # 设置默认值
inheritor_level_coefficient = living_heritage_calculator.calculate_inheritor_level_coefficient(inheritor_level)
offline_sessions = int(data.offline_activities) #线下传习次数
# 以下调用API douyin\bilibili\kuaishou
douyin_views = 0
kuaishou_views= 0
bilibili_views= 0
# 跨界合作深度:将枚举映射为分值
# 前端传入的是数字字符串 ("0", "1", "2", "3"),后端也支持中文标签
depth_mapping = {
# 前端传入的数字字符串
"0": 0.0, # 无
"1": 3.0, # 品牌联名
"2": 5.0, # 科技载体
"3": 10.0, # 国家外交礼品
# 兼容中文标签(以防其他入口传入)
"": 0.0,
"品牌联名": 3.0,
"科技载体": 5.0,
"国家外交礼品": 10.0,
}
depth_val = str(data.cooperation_depth) if data.cooperation_depth else "0"
cross_border_depth = depth_mapping.get(depth_val, 0.0)
# 纹样基因值B22相关参数
# 以下三项需由后续模型/服务计算;此处提供默认可计算占位
historical_inheritance = 0.8
structure_complexity = 0.75
normalized_entropy = 0.85
return {
"inheritor_level_coefficient": inheritor_level_coefficient,
"offline_sessions": offline_sessions,
"douyin_views": douyin_views,
"kuaishou_views": kuaishou_views,
"bilibili_views": bilibili_views,
"cross_border_depth": cross_border_depth,
"historical_inheritance": historical_inheritance,
"structure_complexity": structure_complexity,
"normalized_entropy": normalized_entropy,
}
# 获取 文化价值B2 相关参数
async def _extract_calculation_params_b3(data: UserValuationCreate) -> Dict[str, Any]:
# 过去30天最高价格 过去30天最低价格
price_fluctuation = [float(i) for i in data.price_fluctuation ]
highest_price,lowest_price= max(price_fluctuation), min(price_fluctuation)
lawsuit_status = "无诉讼" # 诉讼状态 TODO (API获取)
inheritor_ages = data.inheritor_age_count # [45, 60, 75] # 传承人年龄列表
return {
"highest_price": highest_price,
"lowest_price": lowest_price,
"lawsuit_status": lawsuit_status,
"inheritor_ages": inheritor_ages,
}
# 获取 市场估值C 相关参数
async def _extract_calculation_params_c(data: UserValuationCreate) -> Dict[str, Any]:
# 市场竞价C1 TODO 暂无
# transaction_data: 交易数据字典(API获取)
# manual_bids: 手动收集的竞价列表(用户填写)
# expert_valuations: 专家估值列表(系统配置)
transaction_data: Dict = None
manual_bids: List[float] = None
# expert_valuations = [random.uniform(0, 1) for _ in range(3)]
expert_valuations = 0 # 默认 0
# 浏览热度分 TODO 需要先确定平台信息
# 优化后的多平台数据结构支持从platform_accounts中提取或使用默认值
default_platform_data = {
"bilibili": {
"account": "default_account",
"likes": "100",
"comments": "50",
"shares": "20",
"views": "500"
}
}
# 如果有平台账户数据,尝试提取浏览量,否则使用默认值
if hasattr(data, 'platform_accounts') and data.platform_accounts:
platform_accounts_data = data.platform_accounts
# 获取第一个平台的数据
first_platform_key = next(iter(platform_accounts_data))
first_platform_data = platform_accounts_data[first_platform_key]
# 尝试获取浏览量,如果没有则使用默认值
daily_browse_volume = float(first_platform_data.get("views", "500"))
else:
daily_browse_volume = 500.0 # 默认值
collection_count = 50 # 收藏数(默认占位)
# 稀缺性乘数C3 发行量
circulation = data.circulation or '限量'
# 时效性衰减C4 参数 用户选择距离最近一次市场活动(交易、报价、评估)的相距时间
recent_market_activity = data.last_market_activity
# 如果为空、None或"0",设置默认值
if not recent_market_activity or recent_market_activity == "0":
recent_market_activity = '2024-01-15'
return {
# 计算市场竞价C1
# C1 的实现接受 transaction_data={'weighted_average_price': x}
"weighted_average_price": transaction_data,
"manual_bids": manual_bids, # 手动收集的竞价列表 (用户填写)
"expert_valuations": expert_valuations, # 专家估值列表 (系统配置)
# 计算热度系数C2
"daily_browse_volume": daily_browse_volume, # 近7日日均浏览量 (API获取)
"collection_count": collection_count, # 收藏数
"issuance_level": circulation, # 默认 限量发行 计算稀缺性乘数C3
"recent_market_activity": recent_market_activity, # 默认 '近一月' 计算市场估值C
}